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The story till now...
Semantic entailment: 

Are all models of formula      also models of      ?
If                , the formula        is unsatisfiable
We are interested in procedures for determining this 

relationship
Approach 1: search for a proof that uses the rules of 

natural deduction
Natural deduction provides “natural” proofs, i.e. short 

arguments such as humans would give; however, such 
proofs can be hard to find by a computer



The story till now...
Approach 2: employ the rules of resolution

Note that                  if
We first normalize formulas       and          in conjunctive 

normal form (giving       and        )
Then we repeatedly apply the resolution rule on           

till we either cannot derive new clauses or we derive
 If we derive       by means of resolution, it can be shown that 

the formula is unsatisfiable
 Otherwise, it is satisfiable



The story till now...
Example of resolution

In the general case, the repeated application of 
resolution can yield an exponential number of 
clauses...
We would prefer not to store and generate all of these



The story till now...
Resolution can be applied efficiently on definite 

clauses, by means of the forward chaining algorithm
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn  q→  in C where p1,...,pn are 
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived. 



The story continues
Can we use the ideas of forward chaining and 

resolution in a more efficient algorithm?



Deciding satisfiability of CNF 
formulas: DPLL
The DPLL algorithm for deciding satisfiability was 

proposed by Davis, Putman, Logeman and Loveland 
(1960, 1962) 

General ideas:
we perform depth-first over the space of all possible 

valuations
based on a partial valuation, we simplify the formula to 

remove redundant literals
based on the formula, we fix the valuation of as many 

atoms as possible



DPLL: Simplification
If the valuation of atom p is “true”

every clause in which literal p occurs, is removed
from every clause in which p is negated,        is removed

Similarly, if the valuation of atom p is “false”
every clause in which literal        occurs, is removed
from every clause in which p occurs, literal p is removed

similar to resolution



DPLL: Simplification
Special case 1 of simplification is when an empty clause 

is obtained, i.e. the clause 

in this case the current valuation can never be extended 
to a valuation that satisfies the formula

Special case 2 of simplification is when the empty CNF 
formula is obtained, i.e. the formula

in this case we have found a satisfying valuation



DPLL: Fixing pure symbols
If an atom always has the same sign in a formula (i.e., 

the literals p and          do not occur at the same time), 
the atom is called pure. We fix the valuation of a pure  
atom to the value indicated by this sign

Note: we can apply simplification afterwards and remove 
redundant clauses



DPLL: Fixing unit clauses
If a clause consists of only one literal (positive or negative), 

this clause is called a unit clause. We fix the valuation of an 
atom occurring in a unit clause to the value indicated by 
the sign of the literal.

Also here, we apply simplification afterwards; after 
simplification, we may have new unit clauses, which we can 
use again; this process is called unit propagation



DPLL Algorithm

DPLL ( valuations V, formula φ )
φ' = simplification of φ based on V
if φ' is an empty formula then return true
if φ' contains the empty clause then return false
if φ' contains a pure atom p with sign v then 

return DPLL(V ∪ {p=v}, φ')
if φ' contains a unit clause for atom p with sign v then 

return DPLL(V ∪ {p=v}, φ')
let p be an arbitrary atom occurring in  φ'
if DPLL(V ∪ {p=true}, φ') then return true
else return DPLL(V ∪ {p=false}, φ')

Branching



Optimizations of DPLL
Component analysis: if the clauses can be 

partitioned such that variables are not shared between 
clauses in diferent partitions, we solve the partitions 
independently

Value and variable ordering: when choosing the 
next atom to fix, try to be clever (i.e. pick one that 
occurs in many clauses) 

component 1 component 2



Optimizations of DPLL
Clause learning: if a contradiction is found, try to 

find out which assignments caused this contradiction, 
and add a clause (entailed by the original CNF 
formula) to avoid this combination of assignments in 
the future

Example

Note: no unit propagation or pure literals present,
branching necessary.



Optimizations of DPLL

No propagation possible, branch with p=true

No propagation possible, branch with q=true

No propagation possible, branch with r=true

Conflict found in t  apply resolution on → t for the original
versions of conflicting clauses

 → clause         is entailed by the original formula, add
as learned clause to original formula  apply propagation on →
this formula new  → p=true, q=true, r=false  → search stops



Optimizations of DPLL

Random restarts: if the search is unsuccessful too 
long, stop the search, and start from scratch with 
learned clauses (and possibly a diferent variable/value 
ordering)

Clever indexing: use heavily optimized data 
structures for storing clauses, atoms, and lists of 
clauses in which atoms occur

Portfolios: run several diferent solvers for a short 
time; use data gathered from these runs to select the 
final solver to execute



Applications of  SAT solvers
SAT solvers are usually implementations of the DPLL 
algorithm. They are used for:
Model checking
Planning
Scheduling
Experiment design
Protocol design (networks)
Multi-agent systems
E-commerce
Software package management
Learning automata
...

http://www.youtube.com/watch?v=0gt503wK7AI

http://www.youtube.com/watch?v=0gt503wK7AI


Progress in SAT solvers
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