
PROPOSITIONAL LOGIC (3)

based on

Huth & Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

Russell & Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

The story till now...
Semantic entailment:

Are all models of formula also models of ?
If , the formula is unsatisfiable
We are interested in procedures for determining this

relationship
Approach 1: search for a proof that uses the rules of

natural deduction
Natural deduction provides “natural” proofs, i.e. short

arguments such as humans would give; however, such
proofs can be hard to find by a computer

The story till now...
Approach 2: employ the rules of resolution

Note that if
We first normalize formulas and in conjunctive

normal form (giving and)
Then we repeatedly apply the resolution rule on

till we either cannot derive new clauses or we derive
 If we derive by means of resolution, it can be shown that

the formula is unsatisfiable
 Otherwise, it is satisfiable

The story till now...
Example of resolution

In the general case, the repeated application of
resolution can yield an exponential number of
clauses...
We would prefer not to store and generate all of these

The story till now...
Resolution can be applied efficiently on definite

clauses, by means of the forward chaining algorithm
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn q→ in C where p1,...,pn are
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.

The story continues
Can we use the ideas of forward chaining and

resolution in a more efficient algorithm?

Deciding satisfiability of CNF
formulas: DPLL
The DPLL algorithm for deciding satisfiability was

proposed by Davis, Putman, Logeman and Loveland
(1960, 1962)

General ideas:
we perform depth-first over the space of all possible

valuations
based on a partial valuation, we simplify the formula to

remove redundant literals
based on the formula, we fix the valuation of as many

atoms as possible

DPLL: Simplification
If the valuation of atom p is “true”

every clause in which literal p occurs, is removed
from every clause in which p is negated, is removed

Similarly, if the valuation of atom p is “false”
every clause in which literal occurs, is removed
from every clause in which p occurs, literal p is removed

similar to resolution

DPLL: Simplification
Special case 1 of simplification is when an empty clause

is obtained, i.e. the clause

in this case the current valuation can never be extended
to a valuation that satisfies the formula

Special case 2 of simplification is when the empty CNF
formula is obtained, i.e. the formula

in this case we have found a satisfying valuation

DPLL: Fixing pure symbols
If an atom always has the same sign in a formula (i.e.,

the literals p and do not occur at the same time),
the atom is called pure. We fix the valuation of a pure
atom to the value indicated by this sign

Note: we can apply simplification afterwards and remove
redundant clauses

DPLL: Fixing unit clauses
If a clause consists of only one literal (positive or negative),

this clause is called a unit clause. We fix the valuation of an
atom occurring in a unit clause to the value indicated by
the sign of the literal.

Also here, we apply simplification afterwards; after
simplification, we may have new unit clauses, which we can
use again; this process is called unit propagation

DPLL Algorithm

DPLL (valuations V, formula φ)
φ' = simplification of φ based on V
if φ' is an empty formula then return true
if φ' contains the empty clause then return false
if φ' contains a pure atom p with sign v then

return DPLL(V ∪ {p=v}, φ')
if φ' contains a unit clause for atom p with sign v then

return DPLL(V ∪ {p=v}, φ')
let p be an arbitrary atom occurring in φ'
if DPLL(V ∪ {p=true}, φ') then return true
else return DPLL(V ∪ {p=false}, φ')

Branching

Optimizations of DPLL
Component analysis: if the clauses can be

partitioned such that variables are not shared between
clauses in diferent partitions, we solve the partitions
independently

Value and variable ordering: when choosing the
next atom to fix, try to be clever (i.e. pick one that
occurs in many clauses)

component 1 component 2

Optimizations of DPLL
Clause learning: if a contradiction is found, try to

find out which assignments caused this contradiction,
and add a clause (entailed by the original CNF
formula) to avoid this combination of assignments in
the future

Example

Note: no unit propagation or pure literals present,
branching necessary.

Optimizations of DPLL

No propagation possible, branch with p=true

No propagation possible, branch with q=true

No propagation possible, branch with r=true

Conflict found in t apply resolution on → t for the original
versions of conflicting clauses

 → clause is entailed by the original formula, add
as learned clause to original formula apply propagation on →
this formula new → p=true, q=true, r=false → search stops

Optimizations of DPLL

Random restarts: if the search is unsuccessful too
long, stop the search, and start from scratch with
learned clauses (and possibly a diferent variable/value
ordering)

Clever indexing: use heavily optimized data
structures for storing clauses, atoms, and lists of
clauses in which atoms occur

Portfolios: run several diferent solvers for a short
time; use data gathered from these runs to select the
final solver to execute

Applications of SAT solvers
SAT solvers are usually implementations of the DPLL
algorithm. They are used for:
Model checking
Planning
Scheduling
Experiment design
Protocol design (networks)
Multi-agent systems
E-commerce
Software package management
Learning automata
...

http://www.youtube.com/watch?v=0gt503wK7AI

http://www.youtube.com/watch?v=0gt503wK7AI

Progress in SAT solvers

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

